Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(14): 3118-3130, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38451109

RESUMO

Granular materials show inhomogeneous flows characterized by strain localization. When strain is localized in a sheared granular material, rigid regions of a nearly undeformed state are separated by shear bands, where the material yields and flows. The characteristics of the shear bands are determined by the geometry of the system, the micromechanical material properties, and the kinematics at the particle level. For a split-bottom shear cell, recent experimental work has shown that mixtures of hard, frictional and soft, nearly frictionless particles exhibit wider shear zones than samples with only one of the two components. To explain this finding, we investigate the shear zone properties and the stress response of granular mixtures using discrete element simulations. We show that both interparticle friction and elastic modulus determine the shear-band properties and packing density of granular mixtures of various mixing ratios, but their stress response depends strongly on the interparticle friction. Our study provides a fundamental understanding of the micromechanics of shear band formation in granular mixtures.

2.
J Imaging ; 8(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049846

RESUMO

Vegetation alters soil fabric by providing biological reinforcement and enhancing the overall mechanical behaviour of slopes, thereby controlling shallow mass movement. To predict the behaviour of vegetated slopes, parameters representing the root system structure, such as root distribution, length, orientation and diameter, should be considered in slope stability models. This study quantifies the relationship between soil physical characteristics and root growth, giving special emphasis on (1) how roots influence the physical architecture of the surrounding soil structure and (2) how soil structure influences the root growth. A systematic experimental study is carried out using high-resolution X-ray micro-computed tomography (µCT) to observe the root behaviour in layered soil. In total, 2 samples are scanned over 15 days, enabling the acquisition of 10 sets of images. A machine learning algorithm for image segmentation is trained to act at 3 different training percentages, resulting in the processing of 30 sets of images, with the outcomes prompting a discussion on the size of the training data set. An automated in-house image processing algorithm is employed to quantify the void ratio and root volume ratio. This script enables post processing and image analysis of all 30 cases within few hours. This work investigates the effect of stratigraphy on root growth, along with the effect of image-segmentation parameters on soil constitutive properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...